Mikrovlnná hypertermie významně zvyšuje účinnost radioterapie a chemoterapie při léčbě nádorových onemocnění. Tato metoda umožňuje snižovat dávky konvenční léčby a tím i omezit její vedlejší účinky. Věnujeme se vývoji klinického systému pro mikrovlnnou hypertermii zaměřeného na léčbu nádorů v oblasti pánve, mozku a hlavy a krku. Naše práce zahrnuje:
Systém pro plánování hypertermické léčby - v tomto projektu je našim cílem vyvinout univerzální systém hypertermického plánování léčby aplikovaného v klinické praxi.
Přesné sledování teploty během mikrovlnné hypertermie je klíčové pro zajištění bezpečnosti a efektivity léčby. Invazivní měření poskytuje pouze bodové informace, zatímco neinvazivní metody, jako je magnetická rezonance, jsou finančně i technicky náročné. Vyvíjíme proto systém pro neinvazivní monitorování teploty jako součást komplexního hypertermického řešení. Výzkum zahrnuje:
Zaměřujeme se na aplikace u nádorů v oblasti pánve, hlavy, krku a mozku, přičemž zvláštní důraz klademe na hypertermii glioblastomů. Z toho důvodu se intenzivně věnujeme měření teplotní závislosti dielektrických parametrů mozkové tkáně, která je zásadní pro přesnost modelů i monitorovacích systémů.
V současnosti neexistuje spolehlivý systém pro přednemocniční detekci a rozlišení typu cévní mozkové příhody (ischemická vs. hemoragická). Rychlá diagnostika je přitom zásadní pro zahájení správné léčby a minimalizaci trvalých následků. Náš tým vyvíjí kompaktní, přenosný mikrovlnný systém ve formě helmy, který umožňuje:
Cílem je vytvořit zařízení vhodné pro použití v terénu, na urgentních příjmech i v sanitkách, které významně urychlí rozhodnutí o dalším postupu léčby.
Přesná znalost dielektrických parametrů tkání je zásadní pro všechny naše aplikace – od hypertermie po diagnostiku pomocí mikrovln. Vyvíjíme cenově dostupný měřicí systém, který kombinuje koaxiální sondu a vektorový analyzátor, s cílem umožnit rychlé vyhodnocování biologických vzorků například ihned po biopsii. Paralelně pracujeme na tvorbě tomografických map dielektrických vlastností pomocí metody MRI-EPT. Naše aktivity dále zahrnují:
Tyto modely a fantomy hrají klíčovou roli v testování a kalibraci našich terapeutických i diagnostických systémů.
Věnujeme se rozvoji radarových technologií pro využití v medicíně, a to zejména v oblastech, kde je klíčová neinvazivní a bezkontaktní detekce či zobrazování v reálném čase. Radarové metody představují perspektivní nástroj v několika klinických i domácích aplikacích:
Zabýváme se výzkumem a vývojem technologií pro elektroporaci, tedy procesem dočasného zvýšení propustnosti buněčných membrán pomocí elektrického pole. Elektroporace má široké využití v klinické praxi, např. v genové terapii, léčbě nádorů či cílené aplikaci léčiv i v biotechnologiích. Naše činnost zahrnuje:
V rámci evropského projektu „Affordable low-field MRI reference system“ agentury EURAMET spolupracujeme s výzkumnými institucemi na vývoji nízkonákladových systémů magnetické rezonance s B₀ = 50 mT. Systém konstruovaný na fakultě, bude umožňovat zobrazení hlavy a končetin člověka. Magnetické pole bude generováno Halbachovým magnetem složeným z přibližně 2500 neodymových permanentních magnetů – díky tomu bude zařízení:
Systémy typu LF MRI představují potenciálně dostupnou alternativu pro diagnostiku zejména v podmínkách s omezenými zdroji.
Pro účely plánování intervenčních kardiologických výkonů provádíme segmentaci srdečních struktur z CT snímků a vytváříme detailní 3D modely srdce. V těchto modelech identifikujeme a navrhujeme až šest možných přístupových míst pro punkci mezisíňové přepážky, zejména v souvislosti s uzávěrem ouška levé síně (LAA) – zákrokem, který hraje klíčovou roli při snižování rizika mozkových příhod u pacientů s fibrilací síní. Současně se v rámci hodnocení tohoto rizika zabýváme numerickou analýzou průtokových poměrů v levé síni, s cílem prozkoumat vliv morfologie ouška levé síně na tvorbu trombů a tím i na pravděpodobnost vzniku embolických příhod. Modely srdcí jsou: